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Fig 3: High resolution X-ray diffraction curve of the wafer growth of the 2.2THz USAF resonant 
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wafer, V624. The laser was operated in pulsed mode with 250ns long pulses at a repetition rate of 
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Fig 6: Voltage vs current density (V/J) and light output power vs current density (L/J) curves from a 
3.00mm x 0.1mm ridge laser (single plasmon waveguide architecture) from the 3.0THz MIT 
Reference wafer, V569 (device 5). The laser was operated in pulsed mode with 250ns long pulses 
at a repetition rate of 80kHz. 
 
Fig 7: Voltage vs current density (V/J) and light output power vs current density (L/J) curves from a 
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wafer, V585 (device 13). The laser was operated in pulsed mode with 250ns long pulses at a 
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Summary of fourth quarter’s progress (Sep 09 – Dec 09): 
 
● Growth of the new 2.2THz USAF design.  
 
● Fabrication and assessment of the LO-Phonon THz QCL design. 
 
 
 
 
Introduction and Methodology 
 
This project aims to increase the operating temperature of one of the best performing THz QCL 
designs to date [1]. The proposed designs came from a series of interesting results that was initially 
noted when coupling a very simple 4-well per period QCL model with a genetic algorithm; which is 
similar to successfully demonstrated resonant-phonon THz QCL designs. Phase one of the project 
was to; (a) replicate the 3THz MIT resonant LO Phonon QCL structure, as a reference baseline 
and then (b) fabricate a 2.5THZ USAF direct LO-Phonon injection QCL design. This would allow 
better relative comparison of the performance of the USAF design, since it is well know that the 
ultimate temperature performance of the laser structure is very sensitive to doping levels in the 
injector region [2] and the use of Cu-Cu (instead of Au-Au) as a thermo-compression bond in the 
metal-metal waveguide fabrication [3]. Although, the Au-Au thermo-compression bond tends to 
produce a reduction in temperature performance in comparison to a Cu-Cu bond (by ~10-15K), it 
is a more reliable and stable process. Phase two of the project would build on the results of phase 
one or explore alternative design strategies. 
 
As part of a standard characterisation programme, all grown THz QCL wafers would be assessed 
using high resolution X-ray diffraction, to determine both crystalline quality and the thickness of the 
laser active region. They would then be processed into both single plasmon ridge waveguide 
lasers (1.5-3mm long and 0.1-0.2mm wide) and metal-metal waveguide lasers (1-2mm long and 
0.05-0.08mm wide). For electrical and optical characterisation, devices are indium soldered onto 
copper holders and mounted on the cold finger of a continuous flow liquid Helium cryostat. 
Electrical measurements were made in a two terminal configuration. The light output power 
measurements were measured under vacuum with a broad area thermopile detector mounted on 
the cryostat window at a distance ~1mm from the laser facet. Lasing emission spectra are taken 
using a Bruker IFS66v/s Fourier Transform Infrared (FTIR) spectrometer with 7.5GHz resolution.   
 
Following the successful reproduction of the reference structure in Q1/Q2, it was shown in Q2/Q3 
that although the first 2.5THz QCL showed promising electrical characteristics, i.e. the device 
operated in the correct voltage regime and passed currents of the expected order, with no 
unexpected breaks (i.e. field mis-alignment) at low biases, the structure did not optically lase. This 
was confirmed in the low temperature differential resistance trace (dV/dI) showing no significant 
features.  In discussion with the design team at USAF it was decided that the second phase of this 
project (Q3/Q4), would investigate a new direct LO-Phonon injection device design.  
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Results and Discussion 
 
In the coherent (delocalized) wavefunction picture, the injection mechanism in THz QCLs is 
dominated at low temperatures by carrier-carrier scattering. The radiative states are in the form of 
an anticrossed “doublet” and the depopulation mechanism is a near-resonant phonon transition to 
the next period. Since thicker barriers are used in both the injection and extraction processes, 
resonant tunneling is assumed to play a large role in transferring current between. Since it is 
difficult to increase this desired scattering rate without also increasing parasitic (leakage) channels 
it appeared that further improvements should concentrate on injection mechanisms which show a 
smaller parasitic dependence. 
 
The first USAF design from the genetic algorithm indicated that direct electron injection into the 
upper lasing state, using a near-resonant phonon transition, could be an efficient solution. The 
simplest way to achieve this was to remove one of the wells in the MIT reference LO phonon 
design and then to reduce the injection barrier in an attempt to delocalized the upper state enough 
to receive the phonon scattering from the previous period. In this design the direct phonon 
injection mechanism was an inter-well process, figure 1. 
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Fig 1: Band diagram of three periods of the USAF’s 2.5THz resonant phonon injection and depletion active 
region, under an applied electric field of 13.5kV/cm. The moduli squared wavefunctions of the upper state 
(red) and lower (blue) lasing states are shown. Also highlighted are the two states associated with resonant 
LO phonon injection/depopulation (green/black). The layer thicknesses in Angstroms for this 3-well per 
period design are 30/94/25/72/45/154 (Al0.15Ga0.85As barriers in bold). 
 
 
 
 
An alternative approach to achieve direct phonon injection into the upper lasing state is to use an 
intra-well process. The design still aimed to utilise a 3-well per period approach as per the first 
design so once again minor adjustments to the barrier thicknesses were necessary to bring the 
states back to a configuration/overlap similar to the reference MIT design, figure 2. This resulted in 
a small frequency shift of the lasing states to 9.1meV or ~2.2THz, at an alignment field of 
F=13.0kV/cm. 
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Fig 2: Diagram shows 3-periods of the 3-well design biased at 13kV/cm. The moduli squared wavefunctions 
of the upper lasing state (red) and lower (blue) lasing states are shown.  Layers in Angstroms (starting with 
largest phonon injection well): 150/18/90/40/73/45. Silicon doping in the 73Å well was 4x1016cm-3 to 
produce a sheet density of ~3x1010cm-2 per module. 
 
 
 
 
 
The high resolution x-ray diffraction scans from the grown structure (V624) confirms the accuracy 
of growth of the as-requested THz QCL design. For comparison figures 3 (top) and 3 (bottom)  
show the high resolution X-ray diffraction curve (black trace) for the 2.2THz THZ QCL grown wafer 
(V624), as well as a simulation of the AR for this structure (red trace). Both the large angle scan 
(figure 2a) and the expanded view of the fifth, six and seventh order satellite peaks (figure 2b) 
shows that the as grown active region is within the 1% thickness tolerance generally required. 
Furthermore the intensity and linewidths (~20 arc.sec) of the higher order satellite peaks confirm 
the high quality of MBE growth achieved. 
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Fig 3: High resolution X-ray diffraction curve of the wafer growth of the 2.2THz USAF resonant intra-well 
direct LO Phonon THz QCL structure (V624). The black curve shows the as-grown wafer structure, whereas 
the red curve shows a simulation for the design structure; corresponding to a 0.24% thinner active region. 
 
 
The electrical transport through a 3.0mm x 0.25mm single plasmon device from sample V624 
(device 8) unfortunately does not show the three distinct different transport regimes associated 
with THz QCLs, figure 3; (a) initially the device is resistive, (b) at the onset of band alignment 
lasing takes place, this is marked by the sharp ‘knee’ feature, (c) under progressively higher 
applied electric fields the breaking of band alignment. At 4K, the laser ridge shows characteristics 
only associated with typical below threshold alignment IVs; however no lasing in the structures 
was observed. Worryingly the intra-well design structure appears to suffer from significant parasitic 
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leakage channels at low fields. Both of these features are confirmed by the differential resistance 
trace (dV/dI) in the insert, which shows (a) no step discontinuity signature for lasing at the 
expected alignment field and (b) no low bias high resistive channel characteristics. On a positive 
note the device operates in the correct voltage regime and passes currents of the expected order, 
without unexpectedly breaking (band mis-alignment) at low biases (fields).  
 

 

 
Fig 4: Voltage vs current density (V/J) and light output power vs current density (L/J) curves from a 3.00mm 
x 0.25mm ridge laser (single plasmon waveguide architecture) from the 2.2THz USAF wafer, V624. The 
laser was operated in pulsed mode with 250ns long pulses at a repetition rate of 80kHz.  
 
 
 
As with all the previous USAF THz QCL designs multiple ridge lasers were tested from at least two 
processing runs to ensure that the above results are not a consequence of a poor processing run, 
see figure 4 below. As before the electrical transport through a 3.0mm x 0.25mm single plasmon 
device from sample V624 (device 10) did not lase. 
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Fig 5: Voltage vs current density (V/J) and light output power vs current density (L/J) curves from a 3.00mm 
x 0.25mm ridge laser (single plasmon waveguide architecture) from the 2.2THz USAF wafer, V624. The 
laser was operated in pulsed mode with 250ns long pulses at a repetition rate of 80kHz. 
 
 
For comparison the electrical characteristics from the 3.0THz MIT Reference structure (V569) and 
the 2.5THz USAF QCL (V585) are presented in figure 6 and figure 7, respectively. With each 
design, at very low fields the device is initially highly resistive;. which can be seen in the high 
values of dV/dI at low currents. This suggests that the new 2.2THz THz QCL design suffers from 
large parasitic current leakage channels, which will significantly compromise the performance of 
the laser. From previous experience it is unlikely that the design will lase, even when processed 
into a double metal waveguide. 
 
 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0

1

2

3

4
V

ol
ta

ge
 (V

)

Current (A)

0

10

20

30

40

50

60

70

80

90

100

 O
pt

ic
al

 O
ut

pu
t p

ow
er

 (a
.u

)

0 20 40 60 80 100 120 140 160 180 200 220 240

Sample : V624 Device 10, Chip W8
LIV Thermopile
3.00 mm x 250 um
4K

 Current Density (A/cm2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
-5

0

5

10

15

20

25

30

35

40

 

 

dV
/d

I

Current (A)



Evaluation of terahertz quantum cascade laser sources as a potential portable non-destructive 
evaluation method for the inspection of aircraft structures                       Award FA8655-08-1-3090 

 
Fig 6: Voltage vs current density (V/J) and light output power vs current density (L/J) curves from a 3.00mm 
x 0.1mm ridge laser (single plasmon waveguide architecture) from the 3.0THz MIT Reference wafer, V569 
(device 5). The laser was operated in pulsed mode with 250ns long pulses at a repetition rate of 80kHz. 
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Fig 7: Voltage vs current density (V/J) and light output power vs current density (L/J) curves from a 1.50mm 
x 0.2mm ridge laser (single plasmon waveguide architecture) from the 2.5THz USAF wafer, V585 (device 
13). The laser was operated in pulsed mode with 250ns long pulses at a repetition rate of 80kHz. 
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Conclusions and Future Work 
 
The absence of THz lasing from both of the USAF 2.2THz and 2.5THz direct phonon injection 
QCL designs highlights the importance and challenges of THz QCL design to achieve (a) efficient 
population of carriers into the upper lasing state, (b) efficient depopulation of the lower lasing state, 
with (c) optimal carrier transport through the structure. By effectively removing the influence of the 
injection barrier from the design, by reducing this barrier sufficiently to allow the upper state to be 
delocalized enough to receive phonon scattering from the previous period, parasitic scattering of 
carriers out of the upper state may have compromised the success of this design strategy. 
However the initial design premise was an interesting one and a novel approach at increasing the 
maximum operating temperature of this new type of laser.  
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